306 research outputs found

    A Thermal Plume Model for the Martian Convective Boundary Layer

    Full text link
    The Martian Planetary Boundary Layer [PBL] is a crucial component of the Martian climate system. Global Climate Models [GCMs] and Mesoscale Models [MMs] lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically-based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in Large-Eddy Simulations [LESs]. We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking into account stability and turbulent gustiness to calculate surface-atmosphere fluxes. Those new parameterizations for the surface and mixed layers are validated against near-surface lander measurements. Using a thermal plume model moreover enables a first order estimation of key turbulent quantities (e.g. PBL height, convective plume velocity) in Martian GCMs and MMs without having to run costly LESs.Comment: 53 pages, 21 figures, paper + appendix. Accepted for publication in Journal of Geophysical Research - Planet

    Turbulence modelling in Titan's zonal wind collapse

    Get PDF
    International audience1. Context The atmosphere of Titan is interesting by many aspects: it has the thickest atmosphere for a moon in the solar system, an atmosphere in superrotation in the stratosphere, an hemispheric asymmetry of temperature and an haze feedback of haze distribution on circulation between many others. There is another feature by which the atmosphere of Titan is unique, a strong decrease of the zonal wind between 60 and 100 km known as the "zonal wind collapse" (Fig-ure 1). The first measurement of this feature performed by ground-based radio-telescopes recording the Doppler Wind Experiment measurements of the carrier frequency during the Huygens descent [1]. The wind measured above 120 km was approximately of 100 m s −1. Then, below, the wind decreased to about few meters per seconds around 70 km before increasing again to 40 m s −1 at 60 km. 2. Our methodology 2.1 Principle Global Circulation Models (GCM) are powerful tools to study atmospheric circulations and have been employed to study the different planets of the solar system as well as Titan [2, 3, 4]. Although the different models are able to reproduce a realistic atmospheric circulation with superrotation, they fail to reproduce the observed zonal wind collapse characterized by a decrease towards only a few meters per second. We propose here to study for the first time this wind structure using turbulence-resolving model [5]. 2.2 Model description In order to investigate this peculiar wind feature we use the WRF compressible and non-hydrostatic dy-namical core to perform large-eddy simulation (LES) [6]. The timescale of the resolved turbulence is significantly smaller than the radiative timescale, comparable to one Titan year at this altitude [7], so no radiative Figure 1: Huygens temperature (K) and zonal wind profile (m s −1) between 50 and 100 km. processes are taken into account. The model is initialized using pressure, temperature and wind vertical profile as measured by the Huygens probe and shown in Figure 1. The atmospheric and planetary constants (gravity, heat capacity ...) within the model are set to Titan values. The horizontal grid spacing is 20 m spread over a 2 km-wide domain and the vertical grid features 300 levels from 60 to 90 km altitudes. 3. Wave generation Figure 2 displays the vertical wind (top) the associated vertical Eliassen-Palm flux (bottom) ρu w with ρ the density of the atmosphere and u and w the mean perturbation to the mean (domain-averaged) value of the zonal wind u and vertical wind w. The strong decrease of the zonal wind between 65 and 60 km causes a Kelvin-Helmholtz instability that leads to the generation of gravity waves. These waves propagates both towards the ground and towards the upper atmosphere. The dissipation of the wave engenders a momentum transfer to the flow and impacts the zonal wind

    An assessment of the impact of local processes on dust lifting in martian climate models

    Get PDF
    Simulation of the lifting of dust from the planetary surface is of substantially greater importance on Mars than on Earth, due to the fundamental role that atmospheric dust plays in the former’s climate, yet the dust emission parameterisations used to date in martian global climate models (MGCMs) lag, understandably, behind their terrestrial counterparts in terms of sophistication. Recent developments in estimating surface roughness length over all martian terrains and in modelling atmospheric circulations at regional to local scales (less than O(100 km)) presents an opportunity to formulate an improved wind stress lifting parameterisation. We have upgraded the conventional scheme by including the spatially varying roughness length in the lifting parameterisation in a fully consistent manner (thereby correcting a possible underestimation of the true threshold level for wind stress lifting), and used a modification to account for deviations from neutral stability in the surface layer. Following these improvements, it is found that wind speeds at typical MGCM resolution never reach the lifting threshold at most gridpoints: winds fall particularly short in the southern midlatitudes, where mean roughness is large. Sub-grid scale variability, manifested in both the near-surface wind field and the surface roughness, is then considered, and is found to be a crucial means of bridging the gap between model winds and thresholds. Both forms of small-scale variability contribute to the formation of dust emission ‘hotspots’: areas within the model gridbox with particularly favourable conditions for lifting, namely a smooth surface combined with strong near-surface gusts. Such small-scale emission could in fact be particularly influential on Mars, due both to the intense positive radiative feedbacks that can drive storm growth and a strong hysteresis effect on saltation. By modelling this variability, dust lifting is predicted at the locations at which dust storms are frequently observed, including the flushing storm sources of Chryse and Utopia, and southern midlatitude areas from which larger storms tend to initiate, such as Hellas and Solis Planum. The seasonal cycle of emission, which includes a double-peaked structure in northern autumn and winter, also appears realistic. Significant increases to lifting rates are produced for any sensible choices of parameters controlling the sub-grid distributions used, but results are sensitive to the smallest scale of variability considered, which high-resolution modelling suggests should be O(1 km) or less. Use of such models in future will permit the use of a diagnosed (rather than prescribed) variable gustiness intensity, which should further enhance dust lifting in the southern hemisphere in particular

    Rocket dust storms and detached dust layers in the Martian atmosphere

    No full text
    International audienceAirborne dust is the main climatic agent in the Martian environment. Local dust storms play a key role in the dust cycle; yet their life cycle is poorly known. Here we use mesoscale modeling that includes the transport of radiatively active dust to predict the evolution of a local dust storm monitored by OMEGA on board Mars Express. We show that the evolution of this dust storm is governed by deep convective motions. The supply of convective energy is provided by the absorption of incoming sunlight by dust particles, rather than by latent heating as in moist convection on Earth. We propose to use the terminology "rocket dust storm", or conio-cumulonimbus, to describe those storms in which rapid and efficient vertical transport takes place, injecting dust particles at high altitudes in the Martian troposphere (30–50 km). Combined to horizontal transport by large-scale winds, rocket dust storms produce detached layers of dust reminiscent of those observed with Mars Global Surveyor and Mars Reconnaissance Orbiter. Since nighttime sedimentation is less efficient than daytime convective transport, and the detached dust layers can convect during the daytime, these layers can be stable for several days. The peak activity of rocket dust storms is expected in low-latitude regions at clear seasons (late northern winter to late northern summer), which accounts for the high-altitude tropical dust maxima unveiled by Mars Climate Sounder. Dust-driven deep convection has strong implications for the Martian dust cycle, thermal structure, atmospheric dynamics, cloud microphysics, chemistry, and robotic and human exploration

    Estimations of the Seismic Pressure Noise on Mars Determined from Large Eddy Simulations and Demonstration of Pressure Decorrelation Techniques for the Insight Mission

    Get PDF
    The atmospheric pressure fluctuations on Mars induce an elastic response in the ground that creates a ground tilt, detectable as a seismic signal on the InSight seismometer SEIS. The seismic pressure noise is modeled using Large Eddy Simulations (LES) of the wind and surface pressure at the InSight landing site and a Green’s function ground deformation approach that is subsequently validated via a detailed comparison with two other methods: a spectral approach, and an approach based on Sorrells’ theory (Sorrells,Geophys. J. Int. 26:71–82, 1971; Sorrells et al., Nat. Phys. Sci. 229:14–16, 1971). The horizontal accelerations as a result of the ground tilt due to the LES turbulence-induced pressure fluctuations are found to be typically ∌ 2–40 nm/s2 in amplitude, whereas the direct horizontal acceleration is two orders of magnitude smaller and is thus negligible in comparison. The vertical accelerations are found to be ∌ 0.1–6 nm/s2 in amplitude. These are expected to be worst-case estimates for the seismic noise as we use a half-space approximation; the presence at some (shallow) depth of a harder layer would significantly reduce quasi-static displacement and tilt effects. We show that under calm conditions, a single-pressure measurement is representative of the large-scale pressure field (to a distance of several kilometers), particularly in the prevailing wind direction. However, during windy conditions, small-scale turbulence results in a reduced correlation between the pressure signals, and the single-pressure measurement becomes less representative of the pressure field. The correlation between the seismic signal and the pressure signal is found to be higher for the windiest period because the seismic pressure noise reflects the atmospheric structure close to the seismometer. In the same way that we reduce the atmospheric seismic signal by making use of a pressure sensor that is part of the InSight Auxiliary Payload Sensor Suite, we also the use the synthetic noise data obtained from the LES pressure field to demonstrate a decorrelation strategy. We show that our decorrelation approach is efficient, resulting in a reduction by a factor of ∌ 5 in the observed horizontal tilt noise (in the wind direction) and the vertical noise. This technique can, therefore, be used to remove the pressure signal from the seismic data obtained on Mars during the InSight mission

    A high resolution study of the Martian water cycle with a global climate model

    No full text
    International audienceThe martian water cycle's main source is the northern polar cap. Running high resolution models, up to 360° per 180°, help better resolve this ice cap, and better mimic the gradual retreat of the seasonal cap. Atmospheric circulation is also better resolved. Water vapor advection and the subsequent formation of clouds quite differ when we compare these brand new high resolution simulations and the usual lower resolution ones at 64 per 48 grid points

    Finite-Difference Modeling of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Application to Infrasounds Emitted by Meteor Impacts

    Get PDF
    The propagation of acoustic and gravity waves in planetary atmospheres is strongly dependent on both wind conditions and attenuation properties. This study presents a finite-difference modeling tool tailored for acoustic-gravity wave applications that takes into account the effect of background winds, attenuation phenomena (including relaxation effects specific to carbon dioxide atmospheres) and wave amplification by exponential density decrease with height. The simulation tool is implemented in 2D Cartesian coordinates and first validated by comparison with analytical solutions for benchmark problems. It is then applied to surface explosions simulating meteor impacts on Mars in various Martian atmospheric conditions inferred from global climate models. The acoustic wave travel times are validated by comparison with 2D ray tracing in a windy atmosphere. Our simulations predict that acoustic waves generated by impacts can refract back to the surface on wind ducts at high altitude. In addition, due to the strong nighttime near-surface temperature gradient on Mars, the acoustic waves are trapped in a waveguide close to the surface, which allows a night-side detection of impacts at large distances in Mars plains. Such theoretical predictions are directly applicable to future measurements by the INSIGHT NASA Discovery mission

    Near-tropical subsurface ice on Mars

    Get PDF
    Near-surface perennial water ice on Mars has been previously inferred down to latitudes of about 45{\deg} and could result from either water vapor diffusion through the regolith under current conditions or previous ice ages precipitations. In this paper we show that at latitudes as low as 25{\deg} in the southern hemisphere buried water ice in the shallow (< 1 m) subsurface is required to explain the observed surface distribution of seasonal CO2 frost on pole facing slopes. This result shows that possible remnants of the last ice age, as well as water that will be needed for the future exploration of Mars, are accessible significantly closer to the equator than previously thought, where mild conditions for both robotic and human exploration lie
    • 

    corecore